生活中神奇的数学现象有哪些?

网上有关“生活中神奇的数学现象有哪些?”话题很是火热,小编也是针对生活中神奇的数学现象有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1、火车相向而行问题:

两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?

我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。

2、为什么天气预报有时会出错?

这几天我一直都在关注着西安的天气,满怀信心地等待着西安下一场“暴雪”,天气预报也是预报有“暴雪”,可是却“非必要,不下雪”,几乎是不见一片雪,这到底是怎么回事呢?俗话说“天有不测风云”。

其实,这涉及到一个数学概念——“混沌”,即“对初始值的极端不稳定性”。常见的“蝴蝶效应”就是混沌的一种现象。

一般情况下,全局性的天气模式基本上遵循着某些已知的合理进程,通过若干种不同的模拟方式,根据略有差异的初始条件,天气预报工作者就能推测未来的天气变化。这里是推测出的可能性,并不是绝对的。

然而,天气是由一系列复杂因素的组合而成的。初始条件的微小变化会使预报结果差异很大,这时,天气已经进入了混沌区域,预报的时间越长,到达混沌点的可能性就越大,于是,天气预报的准确率就越不好把握。当然,随着现代科技的进步,天气预报的准确率也会越来越高,也就是“可能性”越来越大。

3、为什么电风扇的叶片都是奇数?

只要你留意观察身边的电风扇,它的叶片几乎都3、5、7等奇数,知道为什么吗?从技术、成本以及外观等综合因素考虑的结果,其主要原因是:奇数的叶片组合比偶数的叶片组合有着更多的性能优势。

如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。

因此,轴流风扇的设计多为不对称的奇数片叶片设计,这样的设计理念也应用于直升飞机的螺旋桨在内的各种扇叶设计中。

4、买**的中奖概率有多低?

你买过**吗?接下来就以双色球为例来谈谈数学中的概率问题。

双色球是由33个红球和16个蓝球组成,每次开奖基本上维持在6个红球和1个蓝球,所以

一等奖(6+1)中奖概率为:1?17721088=0.0000056%。

二等奖(6+0)中奖概率为:

15?17721088=0.0000846%。

三等奖(5+1)中奖概率为:162?17721088=0.000914%。

四等奖(5+0、4+1)中奖概率为:7695?17721088=0.0434%。

五等奖(4+0、3+1)中奖概率为:137475?17721088=0.7758%。

六等奖(2+1、1+1、0+1)中奖概率为:1043640?17721088=5.889%。

共计中奖率:6.71%,除去六等奖,其他合在一起还不到1%。如果你想中一等奖,只有千万分之一的可能性。

虽然概率很低,但是因为我国的人口基数非常大,买**的人数相对比较多,所以理论上来讲,是有人能中一等奖的!

5、为什么马路上下水道发生井盖几乎都是圆形的?

走在马路上,见到的井盖几乎都是圆形的,很少会见到其他形状的井盖。

这是利用了同一个圆内的直径都是相等,这样不论怎么移动井盖,盖子都不会掉下去,那么在下面施工的工作人员就有安全保障了,盖好井盖后,井盖也就有了安全保证。

如果设计成三角形或者其他多边形的,盖儿虽然比窨井口大一些,但还是有掉下去的可能。

由于窨井有时需要人工梳理或架线等,这时候又要求窨井的面积尽可能地大。在这些图形中,当它们的周长相等时,圆形的面积最大。同时圆形进口又与我们的体型接近,便于工作人员进进出出。

急求一篇初中论文 生活中的数学 三千字左右

学数学好处多多啊!

慎重申明,数学人有真假之分,像我这种拿了个学位的人却实际P都没学会的人,就是假的数学人了。真正的数学人,仰之弥高,望之弥远啊!

首先,如果人的寿命是70年,那么大多数的人会在数学的陪伴下渡过2/7的岁月,在简答求解试证证明中体会数学的博大精深。数学题是怎么都做不完的,数学技巧是怎么都学不完的,数学老师是怎么都会为难人的。想想,数学充实了我们的生活,让我们在课堂上学学学,让我们在假期里做做做,让我们在考场上考考考,多么周到!这次没做出来,下次还可以尝试,这次做出来了,下次换个法儿考你,多么宽容!

其次,数学让我们的谈资又多了那么一点。不仅是考试后的交流,还有对于数学的理解,对于神经质数学人的洞察。班上那个谁谁谁,考了什么学校的数学系,哇,他好强!作为女生,待遇更好。每次告诉别人我是学数学,顿时感觉别人的眼中满是敬佩之情,好象我的脑子长得虽说不大,但正好比别人大了一圈。《美丽心灵》更让数学人带上了“非我同类”的光环,我这个假数学人也受益非浅啊!

还有呢,大家都会提到所谓的数学思维。这可真是一个够悬乎的概念,应该有吧,可惜不是在本科生人身上。也不百分之百,班上有个牛人,一年级上数分,在班级一片火红江山的情况下,惊天动地地考了一根油条两个大饼,大家都认为这是难得一见的真正数学人。可惜,最后连毕业证书都没拿到,游戏误人啊!数学思维是专业的,可惜,不是处世之道。而我们,都是社会人。

不可否认,数学在现实中还真是好处多多,可惜,作为一个受其荼毒至今的可怜人,实在没有什么鲜花献给它。

浅谈生活中的数学0、

摘要: 本文通过对生活中的数学问题进行讨论,从日常小事说起,使大家对生活中的数学有一个初步了解,并让我们进一步体味到数学在生活中的重要性。只有我们能够意识到数学存在于现实生活之中,并被广泛应用于现实世界,才能够切实体会到数学的应用价值,当面对实际问题时,才能主动尝试着从数学的角度运用所学知识和方法去寻求解决问题的策略。由于生活中的数学乐趣,才使我们体会到数学中存在着无限的交响乐,存在着优美的诗。

关键词:使用频率、生活、标征量、乐趣

1、

引言:

“卖西红柿……,一元钱三斤。”这一句简单的叫卖,就有数学问题。也就是说,在我们生活的周围有很多的数学问题,这些数学问题、现象贯穿于生活的方方面面,不仅有一般生活中的常识,也有生产实践中的不在意,还有生活中的游戏、乐趣等等。

总的来说,生活中的数学分为四个方面,一是日常生活中的数学;二是生活与数学的关系;三是生活中的数学乐趣;四是数学对生活的影响。通过这四个方面的论述,可以使我们对生活中的数学有一个比较深层次的了解,从而使我们更加注重生活中的数学。

2、

日常生活中的数学

2.1一日生活中伴随着数学

早上一起来,首先是对一天的工作进行一个比较简单的计划,一天中要干哪些工作,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学。一天的工作结束后,接下来的是对一天的工作进行一个小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字。

从以上的例子中可以比较清楚、明显的看出来,一日生活中的每一件事情都伴随着数字问题,也就是说数学问题伴随在生活中的每一件小事情中。

2.2日常生活中数学的使用频率高

社会的发展带来社会生活方式、内容以及节奏的变化,这样的变化与数学有着怎样的关系,统计结果表明,与人民日常生活联系密切的数学信息按出现频率排列,主要包括:数(大数)、百分数、分数、比例、图形及图表、统计、数学术语这几个方面。这些内容所出现的不同领域包括:政治、军事、经济、科技、教育、文化、卫生、体育、生活、金融保险、广告等。比如,在生活中,一个人如果在刷牙时不关水龙头,那么刷一次牙要浪费7杯水,每班按40人计算一天会浪费多少水?全国一天共浪费多少水?这个数一定是一个很大的数,我们在利用大数的同时也增强了节水的意识。

根据统计结果表明,可以得出以下结论:

(1)数学的定量化特征越来越多地表现在人们的日常生活中。大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻及广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的好似定量的,而不是定性的。

(2)图形图表,尤其是各种各样的统计图、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现报刊中。从这些频频出现的直方图、扇形统计图、数据统计表中,我们看到,为了了解信息、看懂报纸,统计的基本知识和方法已必不可少。

(3)与生活相关的报道及广告中的数学内容也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如方位图、直方图、数学术语、公式等。随着上述行业的不断发展,不难预计。在未来的社会中,数学必将与经济和人们的日常生活发生越来越密切的关系。而就今天的日常生活来说,一件工程的预算、生活中日用品的买卖、人与人之间的对话、一天中时间的安排、一个阶段中各种事务的安排、一天中的一个小结、一个阶段中各种事务的处理情况、工作程序等等,数学在其中的使用已是非常广泛,从而可以说明数学的使用频率已相当高。 3、生活与数学的关系

数学与人们的生活有着非常密切的关系。日常生活中人们离不开数学,购物、估计和计算时间、确定位置等都与数学有关。可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具。无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法。特别是随着计算机的普及与发展,这种需要是与日俱增。而且,数学是和语言一样的一种工具,具有国际通用性。可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;我们邹梓人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面。这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要1000条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用。因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影。

3.1生活是以数学做标征量

在一年要结束的时候,商人在谈论中说我这一年的收入是多少多少,与去年相比怎么样;农民也在谈论这一年中收入了多少多少,有几项收入如何如何,收入了多少粮食;工人也在谈论我这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生学习成绩的提供啊则是对一位教师一年来辛苦工作的最好回报;单位也在做这样一个一个的总结。

一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预计、程度等。

综上所述,数学确实是生活中的一个标征量。 3.2数学催促着生活水平的提高

数学推动了数字化社会的发展,推动了科学的纵深发展,它被广泛应用于现实世界的各个领域。无论是我们日常生活的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持。在努力把科技成果转化为生产力的今天,主动寻求新知识的实际背景,主动寻求知识的应用领域,开辟出更广阔的应用空间,从而催促着我们生活水平的提高。

生活中总有一些数学问题推动着人们的大脑和行动。“本世纪中叶我国赶上中等发达国家水平。”这就催促着我们的大脑在想,我们怎样去发展经济才能在本世纪中叶赶上中等发达国家的人均收入,从而人们在不停地思考我国的经济发展道路,一旦有了发展的新思路,人们就要立即行动起来,为我国的经济发展开启一条新道路,从而推动经济的发展,使人们的生活水平不断提高。

另外,在我们进行的各项活动中,要做成一件事情,往往要受到各种主客观条件的限制和制约,一个自然的想法是:如何在现有条件下以最小的代价获得最佳效果。即怎样才能达到“最近、最省时间、最短距离、最佳效益”等优化问题,相应的数学方法就是优化方法。如果优化中的主、客观条件和要实现的目标都可以表现为线性函数,那么对应的优化问题就称为线性规划问题。这类问题虽然简单,但却是各项经济活动中最为常见的,经济、工业、国防、城市规划及交通运输等领域中都有大量的线性规划问题。在我们的日常生活中也总是想法设法以最优的价格来获得最佳产品,以最小的代价获得最高利润,想办法如何使有限的生产资料得到最充分的利用,如何选择出可行的最佳路线,在课堂上以有限的时间获得最佳的课堂效果;等等。

再如:到北京四个人的车票要多少钱?乘坐什么样的交通工具最省钱?买一支牙膏给十元钱应找回多少钱?五点出门六点一刻回来用了多少分钟?等等,这些问题都在推动正人们去思考,应用数学的方法分区思考,推动人们去行动,增强生活观,影响着人们的日常生活,所以,我们要与数学交朋友,数学是我们劳动和学习必不可少的工具,能够帮助我们处理各种数据,进行计算和证明以及推理。 4、生活中的数学乐趣多

现在的生活,数学游戏多多,比如说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏。如“树上七只猴,地上一只猴,一共几只猴。”等等生活中的例子。这些游戏构成了我们生活中五彩缤纷的画卷。

下面我将再通过几个生活中的实例来说明生活数学的乐趣:(1)在一张纸的中心滴一滴墨水,沿纸的中部将纸对折、压平,然后打开看,位于折痕两侧的墨迹图案有什么特征?肯定是对称的,这里面体现了轴对称的数学知识与乐趣。(2)打“斯诺克”台球,当“主球”与“目标球”之间有障碍时,为了击中目标球,主球应先击打台球桌的边,设法反弹后再击中目标球。如下图所示,

主球A击打桌边的点B处,反弹后再击中目标球C。(根据入射角等于反射角的原理)图中的∠ABD=∠EBC,目标球从A出发经过点B到点C,即相当于从点A′出发直接击打目标球C。这里,就有图形的轴对称变换的原理。(3)有两杯水都是100克,其中一杯放入糖30克,另一杯放入糖25克,哪杯水更甜些?当然是第一杯更甜些。若两杯水分别是40克和45克,第一杯放入30克糖,第二杯放入35克糖,结果哪杯更甜些?需要运用百分数的知识来比较。(4)当你乘车沿一条平坦的路向前行驶时,你前方的那些高大建筑看起来好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,而当你经过它们之后再回头望,那些“沉”下去的建筑又逐渐“冒”了出来。

总之,生活中的数学乐趣多,可以说无处不在。

5、数学对生活的影响是比较大的

数学对生活的影响说明了数学在生活中的地位和作用。衣、食、住、行是社会生活的基础,过去人们追求的是吃饱、穿暖、实现小康水平。随着生活水平的提高,人们追求的目标是均衡的营养、设计新颖的服装、土地的合理利用、舒适的房屋等等。事实上,在日常生活中,就学、就业、住房、医疗、退休、养老等模式,都在发生变化,变得可选择性越来越强,越来越需要减少依赖,增强自主,需要百姓运用自己的头脑分析批判,作出决策。

在众多的选择面前,有人如鱼得水,有人无所适从。无论你是否习惯,是否能够接受,“降水概率”已经赫然于电视和报端。不久的将来,新闻报道中每一条消息旁都会注明“真实概率”;电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟率、火车正点概率、药效概率、广告可靠概率等。总之,世间万物本来如此,我们只是借助于数学帮助恢复其本来面目。生活中如果没有了数学,不能进行定价,我们的买卖就不能进行下去,经济活动也就无法开展;没有了数学,不能进行科学计算,我们的科学研究也就无法进行;没有了数学,不能进行计数,我们基本的农业生产也会变得混乱不堪;没有了数学,就连最起码的日常生活也无法进行下去,因为没有了数学,我们就不可能进行日常生活中的等价交换。

从上所述,数学严重影响着我们的生活,是生活中的重要条件。只要我们善于适当地把数学应用于现实生活解决实际问题,才能更好地体现数学服务于生活。正是由于善于观察生活中的实际问题和勤于思考,牛顿发现了万有引力,欧拉通过数学抽象成功地解决了“哥尼斯堡七桥问题”,又通过“哥尼斯堡七桥问题”创立了图论与线性规划两门学科。只要我们善于观察、勤于思考,现实生活中出现的许多新问题会不断得到解决,生活中的数学语言也才能通过各种途径为各行各业的人传递大量的信息。

6、总结

总上所述,生活中的数学不仅仅是生活中的一种工具,同时也是生活的必需品,而且影响着人们的生活。生活中的数学是人们追求的一个标征量,也是生活中的乐趣。因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它。

关于“生活中神奇的数学现象有哪些?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(21)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 闪杰的头像
    闪杰 2026年01月26日

    我是天宇号的签约作者“闪杰”

  • 闪杰
    闪杰 2026年01月26日

    本文概览:网上有关“生活中神奇的数学现象有哪些?”话题很是火热,小编也是针对生活中神奇的数学现象有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...

  • 闪杰
    用户012607 2026年01月26日

    文章不错《生活中神奇的数学现象有哪些?》内容很有帮助

联系我们:

邮件:天宇号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信