初二数学知识点归纳总结

网上有关“初二数学知识点归纳总结”话题很是火热,小编也是针对初二数学知识点归纳总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初二数学知识点的学习资料,希望对大家有所帮助。

初二数学三角形知识点

1、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。2、角的平分线及其性质

一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:

(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

3垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段

(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。6、三角形的三边关系定理及推论

(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:

①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证明线段不等关系。7、三角形的角关系

三角形的内角和定理:三角形三个内角和等于180°。推论:

①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。

8、三角形的面积

三角形的面积=

2

1

×底×高应用:经常利用两个三角形面积关系求底、高的比例关系或值

八年级 数学三角证明知识点

第一章三角形的证明

1、等腰三角形

(1)三角形全等的性质及判定

全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、

(2)等腰三角形的判定、性质及推论

性质:等腰三角形的两个底角相等(等边对等角)

判定:有两个角相等的三角形是等腰三角形(等角对等边)

推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)

(3)等边三角形的性质及判定定理

性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形

(1)勾股定理及其逆定理

定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系

定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

初二上数学知识点

同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:

①所含字母相同。②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:

⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

⑶.写出合并后的结果。

合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。

(2)不要漏掉不能合并的项。

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

(4)不是同类项千万不能进行合并。

2017初二上数学知识点(二)

一、平均数、中位数、众数的概念

1.平均数

平均数是指在一组数据中所有数据之和再除以数据的个数。

2.中位数

中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。

3.众数

众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。

初二数学知识点归纳 总结 相关 文章 :

★ 八年级数学知识点整理归纳

★ 初二数学上册知识点总结

★ 初二数学知识点归纳

★ 初二数学知识点归纳上册人教版

★ 初二数学知识点复习整理

★ 初二数学知识点整理归纳

★ 初二数学上册知识点总结归纳

★ 初中数学知识点总结最全提纲

★ 初中数学基础知识点归纳总结

★ 初中数学知识点总结大全

数学八上知识点归纳有哪些?

#初二# 导语: 学好数学的关键就在于要适时适量地进行总结归类,下是 无 整理的八年级上册数学知识点归纳三篇,希望对大家有帮助。

第六章知识点

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。

第七章知识点

1、二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4、二元一次方程组的解

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5、二元一次方程组的解法

(1)代入(消元)法(2)加减(消元)法

第八章知识点

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

(2)加权平均数:

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

初二数学上期知识点总结

数学八上知识点如下:

1、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。

2、与一条线段两个端点距离相等的点,在线段的垂直平分线上。

3、如果一个三角形有两个角相等,那么这两个角所对的边也相等。

4、等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

5、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。

初二数学中考知识点归纳

 初中数学相对于小学数学难度有增无减,同学们该如何获得高分,数学的知识点有哪些呢。以下是由我为大家整理的“初二数学上期知识点总结”,仅供参考,欢迎大家阅读。

 初二数学上期知识点总结

 第一章 勾股定理

 1、探索勾股定理

 ① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

 2、一定是直角三角形吗

 ① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形

 3、勾股定理的应用

第二章 实数

 1、认识无理数

 ① 有理数:总是可以用有限小数和无限循环小数表示

 ② 无理数:无限不循环小数

 2、平方根

 ① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

 ② 特别地,我们规定:0的算数平方根是0

 ③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

 ④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

 ⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

 ⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

 3、立方根

 ① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

 ② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

 ③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

 4、估算

 ① 估算,一般结果是相对复杂的小数,估算有精确位数

 5、用计算机开平方

 6、实数

 ① 实数:有理数和无理数的统称

 ② 实数也可以分为正实数、0、负实数

 ③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

 7、二次根式

 ① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

 ② =(a≥0,b≥0),=(a≥0,b>0)

 ③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

 ④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  第三章 位置与坐标

 1、确定位置

 ① 在平面内,确定一个物体的位置一般需要两个数据

 2、平面直角坐标系

 ① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

 ② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

 ③ 建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

 ④ 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

 ⑤ 在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

 3、轴对称与坐标变化

 ① 关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

  第四章 一次函数

 1、函数

 ① 一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

 ② 表示函数的方法一般有:列表法、关系式法和图象法

 ③ 对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

 2、一次函数与正比例函数

 ① 若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

 3、一次函数的图像

 ① 正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

 ② 在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

 ③ 一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

 ④ 一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

 4、一次函数的应用

 ① 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

第五章 二元一次方程组

 1、认识二元一次方程组

 ① 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

 ② 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

 ③ 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

 2、求解二元一次方程组

 ① 将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

 ② 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

 3、应用二元一次方程组

 ① 鸡兔同笼

 4、应用二元一次方程组

 ① 增减收支

 5、应用二元一次方程组

 ① 里程碑上的数

 6、二元一次方程组与一次函数

 ① 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

 ② 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

 7、用二元一次方程组确定一次函数表达式

 ① 先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

 8、三元一次方程组

 ① 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

 ② 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

 ③ 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.

  第六章 数据的分析

 1、平均数

 ① 一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

 ② 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

 2、中位数与众数

 ① 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

 ② 一组数据中出现次数最多的那个数据叫做这组数据的众数

 ③ 平均数、中位数和众数都是描述数据集中趋势的统计量

 ④ 计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

 ⑤ 中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

 ⑥ 各个数据重复次数大致相等时,众数往往没有特别意义

 3、从统计图分析数据的集中趋势

 4、数据的离散程度

 ① 实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

 ② 数学上,数据的离散程度还可以用方差或标准差刻画

 ③ 方差是各个数据与平均数差的平方的平均数

 ④ 其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根

 ⑤ 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  第七章 平行线的证明

 1、为什么要证明

 ① 实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

 2、定义与命题

 ① 证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

 ② 判断一件事情的句子,叫做命题

 ③ 一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么.....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

 ④ 正确的命题称为真命题,不正确的命题称为假命题

 ⑤ 要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

 ⑥ 欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

 ⑦ 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

 a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

 b. 两点之间线段最短

 c. 同一平面内,过一点有且只有一条直线与已知直线垂直

 d. 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

 e. 过直线外一点有且只有一条直线与这条直线平行

 f. 两边及其夹角分别相等的两个三角形全等

 g. 两角及其夹边分别相等的两个三角形全等

 h. 三边分别相等的两个三角形全等

 ⑧ 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

 ⑨ 定理:同角(等角)的补角相等

 同角(等角)的余角相等

 三角形的任意两边之和大于第三边

 对顶角相等

 3、平行线的判定

 ① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

 ② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

 4、平行线的性质

 ① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

 ② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

 ③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

 ④ 定理:平行于同一条直线的两条直线平行

 5、三角形内角和定理

 ① 三角形内角和定理:三角形的内角和等于180°

 ② 定理:三角形的一个外角等于和它不相邻的两个内角的和

 定理:三角形的一个外角大于任何一个和它不相邻的内角

 ③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

拓展阅读:考试高分的小窍门

 整理思绪、内紧外松

 放松心态是应对紧张很好的方法,但是也不能做到太放松,拿随便的态度去面对正经的事情,往往会因为过分的放松,而出现不该丢分的地方却丢分的情况。

 所以要做到内紧外松,集中注意力是考试成功的保证,一定的神经亢奋和紧张,有益于积极思考。同时可以善于利用自我暗示语的强化作用。如可以暗示自己“今天精神很好”“考出好成绩是有把握的”等等。自我暗示语要简短具体和肯定、默默或小声对自己说,这样可以通过听觉、说话、运动等渠道,反馈给大脑皮层的相应区域,形成一个多渠道强化的兴奋中心,能够有效抑制怯场。

有先有后、快慢适宜

 先易后难就是先做简单题,再做复杂题,根据自己的实际,果断跳过啃不动的题目。从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,不要影响解题情绪。

 但是做题要心中有数,一些考生只知道一味地求快,结果题意未读清,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,最终导致失败。所以说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为解题思路提供全面可靠的依据,而思路一旦形成,则要尽量快速完成。

  开头结尾是重点、注意书写规范

 一篇文章的头和尾最重要,阅卷老师第一眼看的就是开头,写的好会给他一个不错的印象,从而在心理上把你的文章归类到一个比较高的档次上。即使后面写的不好,一般也是可以谅解的。

 结尾要好,申论的问题一般是要对社会现象予以评论,评论要有一定的理论深度和政策支持,这就需要考生在平时不断的积累,针对即将到来的考试,临时抱佛脚还需要外部的帮助。

 “书写要工整,卷面能得分”讲的也正是这个道理。笔试的一个特点是以卷面为唯一依据,答题卡在点上,要点准确、条理清楚、逻辑明白固然重要,但是千万不可忽视,书写的规范性。如果字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了。所以希望周末的你能够重视书写规范。

学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的 学习计划 ,是提高工作效率的重要手段。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

二、轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

八年级 上册数学知识点

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x;0,y;0

点P(x,y)在第二象限:x;0,y;0

点P(x,y)在第三象限:x;0,y;0

点P(x,y)在第四象限:x;0,y;0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

初二数学 复习方法

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

平时的数学学习:

○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.

初二数学中考知识点归纳相关 文章 :

★ 初中数学知识点整理:

★ 初中数学基础知识整理归纳

★ 中考数学知识点总结最全提纲

★ 初中数学知识点总结大全

★ 初中数学知识点总结梳理

★ 初三数学知识点考点归纳总结

★ 初中数学基础知识点归纳总结

★ 初中数学知识点总结大全

★ 初中数学知识点总结归纳

关于“初二数学知识点归纳总结”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(20)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 晨烨的头像
    晨烨 2026年01月26日

    我是天宇号的签约作者“晨烨”

  • 晨烨
    晨烨 2026年01月26日

    本文概览:网上有关“初二数学知识点归纳总结”话题很是火热,小编也是针对初二数学知识点归纳总结寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 每一...

  • 晨烨
    用户012608 2026年01月26日

    文章不错《初二数学知识点归纳总结》内容很有帮助

联系我们:

邮件:天宇号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信